Hard X-ray Observations as Diagnostics of Particle Acceleration in Solar Flares

Säm Krucker

Space Sciences Laboratory, UC Berkeley University of Applied Sciences Northwestern Switzerland (FHNW)

Outline:

- Hard X-ray diagnostics: bremsstrahlung
- In-direct imaging: RHESSI, Solar Orbiter STIX
- Focusing optics: NuSTAR, FOXSI

NASA Small Explorer 2002-2018

NASA's RHESSI mission (2002-2018) Over 75,000 solar flares observed

RHESSI broke new ground with high-resolution X-ray and gamma-ray observations of solar flares providing unique diagnostics of how energy is released and particles are accelerated in magnetized plasma.

The figures above show that X-ray flare locations observed by RHESSI follow the same progression in solar latitude as active regions over two sunspot cycles. Hence, flares must be magnetically driven.

(Hannah/Glasgow)

Instrument overvi

9 detectors (7x7x8.5cm) ~3 keV – 10 MeV resolution 1 keV @ 100 keV 3 keV @ 2223 keV Germanium

detectors

spinning spacecraft

grids (masks)

RHESSI indirect imaging

incoming X-rays

detector detected signal is modulated

thermal bremsstrahlung T ~ 30 MK

non-thermal bremsstrahlung accelerated electrons with typical energies above ~10 keV

Hard X-ray spectrum

Bremsstrahlung

Inverse Compton (too weak) Synchrotron seen in radio

- Two components
 - o Thermal
 - o Non-thermal
- Steep spectra!
- Quantitative measurements
- Temperature and EM
- Energy in non-thermal electrons

thermal bremsstrahlung T ~ 30 MK

non-thermal bremsstrahlung accelerated electrons with typical energies

~10-50% of released energy is in accelerated electrons

Hard X-ray spectrum

Bremsstrahlung

Inverse Compton (too weak) Synchrotron seen in radio

- Two components
 - o Thermal
 - o Non-thermal
- Steep spectra!
- Quantitative measurements
- Temperature and EM
- Energy in non-thermal electrons

Hard X-ray timing

thermal:

Fast rise (few minutes up to an hour), slow decay (up to two days)

non-thermal:

Often bursty with peaks of duration of seconds to a few minutes Generally during rise phase of thermal emission with occasional late phase bursts.

Derivative of thermal profile often similar as non-thermal profile

Flare cartoon

Emission from partially limb-occulted flares

for flares occurring behind the solar limb, footpoint emission is occulted

ightarrow purely coronal emission can be studied

Statistical studies: Roy & Datlowe 1975, McKenzie 1975, Mariska et al. 1996, Tomzcak 2001, Krucker & Lin 2008

Emission from partially limb-occulted flares

typical spectrum of partially occulted flare shows 2 components:

- -) thermal
- -) faint emission at higher energies

Krucker & Lin 2008

for flares occurring behind the solar limb, footpoint emission is occulted

 \rightarrow purely coronal emission can be studied

Statistical studies: Roy & Datlowe 1975, McKenzie 1975, Mariska et al. 1996, Tomzcak 2001, Krucker & Lin 2008

Emission from partially limb-occulted flares

typical spectrum of partially occulted flare shows 2 components:

- -) thermal
- -) faint emission at higher energies

different time profiles: emission from flare-accelerated electrons!

Statistical studies: Roy & Datlowe 1975, McKenzie 1975, Mariska et al. 1996, Tomzcak 2001, Krucker & Lin 2007

For a few events: Coronal HXR visible

Power-law spectrum \rightarrow non-thermal The strongest coronal HXR sources are consistent with bulk energization Plasma beta ~1 in energized plasma (Krucker et al. 2010)

Electron heating multi-island during reconnection Dahlin et al. 2014, 2015

2D

3D

Dahlin et al. 2015

Microwave – HXR diagnostics

17 GHz 30-80 keV 6-8 keV 34 GHz **30-80 keV** 6-8 keV

Bremstrahlung of ten's of keV electrons \rightarrow HXR Gyrosynchrotron from 100's of keV electrons \rightarrow MW Upcoming observatory : Chinese Spectral RadioHeliograph Motivation for my stay at ISEE, Nagoya University

Sep 10 X8 flare: Extended Owen Valley Solar Array (EOVSA)

EOVSA & RHESSI

3 GHz

Sept 10, 2017 (X8)

Gary et al. 2018 (ApJ)

ESA's Solar Orbiter Mission

First concept: ~1990 First design: ~2000 Instrument selection: 2007 Mission approved: 2011 Instrument delivery: July 2017 Launch: Feb 2020 Prime mission: 2022-2027

Launch: Feb 2020

In-direct imaging with STIX

Transmission through grids/masks is a sensitive function of the incident X-ray photon

Stereoscopic HXR observations

?

The next generation HXR telescope: direct focusing optics

 Advantage: high imaging dynamic range high sensitivity 	
	FOXSI sounding rocket flight in 2012
FOXSI proposed to NASA's Christe, GSFC). Selected fo	2016 Heliophysics Small Explorer AO (PI Steven r phase A in July 2017. Final selection: Spring 2019
Detector Bench	Optics Bench

FOXSI Small Explorer

Advantage:

- high imaging dynamic range
- high sensitivity

FOXSI sounding rocket flight in 2012

FOXSI proposed to NASA's 2016 Heliophysics Small Explorer AO (PI Steven Christe, GSFC). Selected for phase A in July 2017. Final selection: Spring 2019

HXI on ASO-S provides imaging spectroscopy at higher energies

Sarayan an ana kata kana kana kana kana kana	Correst constructions in the intervent relation of a state of a submerse relation.	
	1	
	1	1

FOXSI sounding rocket result: >10 MK emission in non-flaring active region Ishikawa et al. 2017 (Nature Astronomy)

The detection of >10 MK constrains coronal heating models

NuSTAR solar observations

2017 September 11

Flare loops one day after flare onset.

EUV 171A: flare loops cooled to ~1 MK

NuSTAR: newly reconnected loops above cooling loops.

See also Kuhar et al. 2016

NuSTAR solar observations

2017 September 11

Flare loops one day after flare onset.

EUV 171A: flare loops cooled to ~1 MK

NuSTAR: newly reconnected loops above cooling loops.

See also Kuhar et al. 2016

Take-home message

- Solar HXR: bremsstrahlung
 - heated plasma
 - accelerated electrons
- Magnetic energy release
- Future instrumentation
 - Solar Orbiter STIX
 - HXI onboard ASO-S
 - Focusing optics (FOXSI*)